Interface waves in pre-stressed incompressible solids

نویسنده

  • Michel Destrade
چکیده

We study incremental wave propagation for what is seemingly the simplest boundary value problem, namely that constitued by the plane interface of a semi-infinite solid. With a view to model loaded elastomers and soft tissues, we focus on incompressible solids, subjected to large homogeneous static deformations. The resulting strain-induced anisotropy complicates matters for the incremental boundary value problem, but we transpose and take advantage of powerful techniques and results from the linear anisotropic elastodynamics theory. In particular we cover several situations where fully explicit secular equations can be derived, including Rayleigh and Stoneley waves in principal directions, and Rayleigh waves polarized in a principal plane or propagating in any direction in a principal plane. We also discuss the merits of polynomial secular equations with respect to more robust, but less transparent, exact secular equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on Explicit Strong Ellipticity Conditions for Anisotropic or Pre-stressed Incompressible Solids

We present a set of explicit conditions, involving the components of the elastic stiffness tensor, which are necessary and sufficient to ensure the strong ellipticity of an orthorhombic incompressible medium. The derivation is based on the procedure developed by Zee and Sternberg (Arch. Rat. Mech. Anal. 83 (1983)) and, consequently, is also applicable to the case of the homogeneously pre-stress...

متن کامل

Acoustic waves at the interface of a pre-stressed incompressible elastic solid and a viscous fluid

We analyze the influence of pre-stress on the propagation of interfacial waves along the boundary of an incompressible hyperelastic half-space that is in contact with a viscous fluid extending to infinity in the adjoining half-space. One aim is to derive rigorously the incremental boundary conditions at the interface; this derivation is delicate because of the interplay between the Lagrangian a...

متن کامل

Wave Propagation at an Interface of Elastic and Microstretch Thermoelastic Solids with Microtemperatures

In the present paper, the problem of reflection and transmission of waves at an interface of elastic and microstretch thermoelastic solids with microtemperatureshas been studied. The amplitude ratios of various reflected and transmitted waves are functions of angle of incidence and frequency of incident wave. The expressions of amplitude ratios have been computed numerically for a particular mo...

متن کامل

Reflection of Plane Wave at Traction-Free Surface of a Pre-Stressed Functionally Graded Piezoelectric Material (FGPM) Half-Space

This paper is devoted to study a problem of plane waves reflection at a traction-free surface of a pre-stressed functionally graded piezoelectric material (FGPM). The effects of initial stress and material gradient on the reflection of plane waves are studied in this paper. Secular equation has been derived analytically for the pre-stressed FGPM half-space and used to show the existence of two ...

متن کامل

Reflection and Transmission of Longitudinal Wave at Micropolar Viscoelastic Solid/Fluid Saturated Incompressible Porous Solid Interface

In this paper, the reflection and refraction of longitudinal wave from a plane surface separating a micropolar viscoelastic solid half space and a fluid saturated incompressible half space is studied. A longitudinal wave (P-wave) impinges obliquely at the interface. Amplitude ratios for various reflected and transmitted waves have been obtained. Then these amplitude ratios have been computed nu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017